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ABSTRACT  
In this paper, we present CFAR detectors for STAP random arrays. The problem is formulated as detection of 
sparse targets given space-time observations from thinned random arrays. The observations are corrupted by 
colored Gaussian noise of unknown covariance matrix, but secondary data is available for estimating the 
covariance matrix. New CFAR detectors are developed that cope with the high sidelobes of random arrays. 
Analysis demonstrate high performance with significantly fewer elements than a ULA. 

1.0 INTRODUCTION 

Ground moving target indicator (GMTI) radar is an airborne radar mounted on an aircraft that detects the 
presence of targets on the ground. One of the main challenges faced by GMTI radars is the detection of slow 
moving targets in the presence of ground clutter interference. Space-time adaptive processing (STAP) 
implemented with antenna arrays has been a classical approach to clutter cancellation in airborne radar [1]. One 
of the challenges with STAP is that the minimum detectable velocity (MDV) of targets is a function of the 
baseline of the antenna array: the larger the baseline (i.e. the narrower the beam), the lower the MDV. 
Unfortunately, increasing the baseline of a uniform linear array (ULA) entails a commensurate increase in the 
number of elements.   

An alternative approach to increasing the resolution of a radar, but without using a large number of sensors is to 
use a large, but sparsely populated array. In a sparse array, the sensors are placed across a large array with 
interelement spacing greater than half a wavelength in a nonuniform manner to avoid grating lobes. Since the 
resolution of the radar depends mostly on the size of the aperture [2], a radar utilizing a sparse array may achieve 
a high angular resolution with significantly fewer sensors than a ULA. One simple method to populate the large 
array with nonuniform sensor positions, is to place the sensors across a large array aperture randomly, which is 
referred to as random arrays [2],[3]. Unfortunately, sparse arrays do not come without drawbacks. Due to the 
spatial undersampling, the array beampattern suffers from high sidelobes. During the beamforming stages of 
STAP, these high sidelobes may cause a significant increase in false alarms [4].  

In [5], Carin demonstrates that measurements from random arrays are consistent to projection measurements that 
can be utilized by compressive sensing (CS) [6]. This suggests that the user may reap the full benefits of a large 
random array without worrying that the high sidelobes unnecessarily increase the false alarm rate. The goal of 
CS is to recover the signal of interest x, given the received data vector y and a linear model y=Ax+e, where A is 
a measurement matrix and e is an interference vector. If the signal x is known to be sparse (i.e. contains K 
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nonzero elements where K is much smaller than the number of entries in x), the K sparse solution (a solution 
with at most K nonzero entries) may be found solving the nonconvex optimization problem  

   

0 0min  subject to K− ≤x y Ax x‖ ‖ ‖ ‖         (1)
                                                                                               
where 0|| ||x  counts the numbers of non-zero elements in x . The above optimization problem is nonconvex, and 
only approximate solutions can be obtained. A popular approach to solving (1) is to use Matching Pursuit (MP) 
algorithms [7]-[11]. MP belong to the class of greedy algorithms, which search iteratively one-by-one for 
components of the unknown vector x. Components of x detected by MP iterations are removed from subsequent 
iterations to reduce interference to components of x yet to be detected. MP algorithms are a popular and 
attractive choice because of their lower computational complexity [12]. A large body of literature exists on CS 
applications to radar, but the literature on applying MP to CFAR radar is scarce, with some exceptions, e.g. [10], 
[13]. In particular [13], does not account for colored Gaussian noise and unknown interference covariance 
matrix. 

In this paper, we extend the work in [13] and propose new detection algorithms for airborne radar, which 
combine the strengths of random arrays with the ability of sparsity based algorithms to handle undersampling 
effects. We propose a sparsity-based CFAR detection algorithms, referred to as MP-CFAR. MP-CFAR consists 
of a target localization stage followed by a target detection stage.  

2.0  SIGNAL MODEL 

In this section, we introduce the STAP radar signal model and discusses properties of random arrays in STAP 
radar. Consider a radar system mounted on an aircraft, in which aN  elements collect returns of a narrowband 
transmitted signal consisting of an pN -pulse coherent waveform with pulse-repetition-interval rT . The radar 

operating carrier wavelength is λ, and the airborne platform velocity is pv , where the velocity vector is assumed 

aligned with the array axis. The aN  receive sensor locations 1 2, ,...
aNz z z  are assumed to be chosen randomly 

within an aperture of length Z, where the sensor locations and the aperture length are expressed in units of the 
wavelength λ. For concreteness, it is assumed that the positions of receive elements are drawn from a uniform 
distribution. An example of an array is shown in Figure 1. 

Let sinu θ=  denote the spatial frequency associated with the azimuth angle measured with respect to the 
normal to the array. The 1aN ×  array response vector ( )uc , is defined 

1 2 22 21( ) , , , Na
Tj z uj z u j z u

a

u e e e
N

ππ π = … c .         (2) 

Since by applying the vector ( )u∗c  the array is steered to spatial frequency u , ( )uc  is also known as a steering 
vector.  
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Figure 1: STAP random array radar system model 

 

The Doppler shift caused by a target moving at velocity tv  relative to the normal to the array is 2 / .d tf v λ=  
The normalized Doppler frequency v  is the Doppler shift df  normalized to the sampling frequency 1/ ,rT  
where rT  is the pulse repetition interval, d rv f T= . The 1pN ×  temporal steering vector ( )vg  of a target with 
normalized Doppler frequency v  is given by 

2 ( 1)21( ) 1, , , , p
Tj N vj v

p

v e e
N

ππ − = … g .         (3) 

For notational convenience, let a pN N N= , then the 1N ×  space-time steering vector of a target with spatial 
frequency u  and Doppler v  is given by 

( , ) ( ) ( )u v v u= ⊗a g c             (4) 

where, ⊗  represents the Kroneckor product. The 1N ×  baseband y  signal received at the array from a target 
with steering vector a  and complex amplitude x  is given by 

x= +y a e              (5) 

where c w= +e e e  is the interference vector consisting of the ground clutter contributions ce  and complex-
valued white Gaussian noise we . We treat ground clutter and thermal noise as uncorrelated processes, and 
therefore the N N×  interference and noise covariance matrix is given by 

( )( ) .H
c w c w c w = + + = + R e e e e R RE          (6)
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Here wR  is the covariance matrix of the thermal noise given by 2
w σ=R I  where 2σ  is the power of thermal 

noise. A typical model for the clutter covariance matrix cR  [14] is 

( ) ( )
1

1
( ) , ,H

c s u u u u u duξ ξ
−

= ∫R a a          (7) 

The signal model for K  targets is given by 

= +y Ax e ,              (8) 

where, A  is the N G×  measurement matrix whose columns are steering vectors associated with a grid of 
possible target locations on the angle-Doppler map and x  is a 1G×  vector of complex target amplitudes. The 
vector x  contains only K G  nonzeros. In later sections, we apply optimization algorithms that operate on a 
grid. To this end, we discretize the angle-Doppler map into 2G G=  grid points, where G  is the number of grid 
points in each of the two domains. The G  grid points serve as resolution cells. Typically the dimensionality of 
the signal space N  is much smaller than the number of resolution cells, .N G  Therefore, the 1G×  vector of 
target gains x  is assumed to be sparse, in the sense that it has K G  nonzero entries. 

In STAP, the covariance matrix R  is typically unknown, but can be estimated from secondary data. The 
secondary data is assumed to consist of independent identically distributed vectors with a covariance matrix 
common with the cell under test. Let L  be the number of secondary data vectors and ( )lq  a secondary data 
vector, the maximum likelihood estimate (MLE) of the covariance matrix is the sample covariance matrix 



1

1 ( ) ( )
L

H

l
l l

L =

= ∑R q q .            (9) 

In subsequent sections, we will make use of the inverse of the sample covariance matrix. In order to ensure that 
 1−
R  exists, we make the assumption that L N> . 

In random arrays, antenna elements are placed at random between the end points of an array. Since the goal is to 
obtain a thinned array, the average spacing between antenna elements is larger than half-wavelength. Thus, the 
term “random arrays” refers to arrays that are thinned relative to a filled ULA.  

STAP relies on the fact that the rank of the clutter covariance matrix cR  (often referred to as clutter rank) is 
rank deficient. As a result, whitening of the clutter interference does not result in significant loss of target SNR. 
In a filled ULA, the clutter map (defined as ( , ) ( , ),H

cu v u va R a  with u  and v  sweeping through their domains 

1,u <  1),v <  forms a diagonal ridge above the uv plane. The width of the ridge along the spatial frequency u  
axis equals the beamwidth of the array. Thus the clutter ridge of a random array is expected to be narrower than 
the clutter ridge of a filled ULA with the same number of elements. This is illustrated in Figure 2. 
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Figure 2:(Left figure): Clutter map using a ULA with 10N =  elements, 20P =  pulses, and 1ξ = . 
(Right figure): Clutter map using a random array with 10N =  elements, 20P =  pulses, and 1ξ = . 

The elements of the sparse random array are spread across an array of size 15λ .  

 
The panel on the left of Figure 2 shows the clutter map of a ULA with 10N =  elements, while the panel on the 
right shows the clutter map of a random array of the same number of elements (10) spread over 15λ  (rather than 
the 5λ  ULA aperture), both the clutter maps are generated with 1ξ = . It is noticed that the clutter ridge of the 
random array is narrower, which leads to a lower MDV. Note that the clutter map of the sparse array also 
exhibits multiple, spurious clutter ridges due to higher sidelobes of the beampattern. 

The clutter rank of a filled ULA can be computed from Brennan's rule 

rank( ) ( 1)c c a pr N N ξ= = + −R ,          (10) 

where recall that 2 / .p rv Tξ λ=  Now, given a random array with aperture size Z , let full
aN  represent the 

number of sensors in a filled ULA configuration. From [15] the clutter rank of a random array is 

( 1)full
c a pr N N ξ≈ + − .            (11) 

It is noticed that the clutter rank of a random array depends on the aperture size Z , since 2full
aN Z= . This 

means the random array will require the same number of degrees of freedom to suppress the clutter as a large 
ULA. However, the number of degrees of freedom available to the random array is less than that of the large 
ULA. Therefore, fewer degrees of freedom are left to supply gain for the target than for the filled ULA. 

3.0  STAP DETECTION PROBLEM 

In this section, we introduce the detection problem in addition, we present the CS optimization problem in order 
to introduce the sparsity based detection problem. Detection by AMF [16] is agnostic to the possible presence of 
multiple targets, the AMF does not take into account any potential interference caused by targets. When a ULA 
is employed, the sidelobes are considered negligible and hence, it is often not necessary to consider the potential 
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interference between targets. However, a random array exhibits large sidelobes and hence this assumption is no 
longer true. In contrast, the model (8) accounts for multiple targets. As explained previously, the number of rows 
of ,A  N , is much smaller than the number of columns G . The problem of recovering x  given y  and A  is 
then underdetermined, and hence does not have a unique solution. Instead, inspired by compressive sensing 
techniques, we seek to solve the following optimization problem 

0 0min  subject to K− ≤x y Ax x‖ ‖ ‖ ‖         (12) 

where 0x‖ ‖ denotes the number of nonzero elements of x . As previously discussed, problems involving the 
zero norm are non-convex, and their solution implemented by an exhaustive search among all combinations of 
non-zero indices of x , requires exponential complexity [17]. Matching pursuit (MP) is a practical complexity 
algorithm whose solution approximates the solution to (12). However, MP is not directly applicable to the radar 
problem for two reasons; (1) it does not take into account the presence of clutter, and (2) in radar, the number of 
targets K  is not known apriori. Proposed solutions to address these problems as well as various enhancements 
are the presented in this section. 

In radar, clutter contributions are typically much stronger than the unknown targets and, if not suppressed, may 
severely interfere with target detection. A whitening operation is applied to the observed data and to the 

measurement matrix .A  Specifically, let  1/2−
=z R y  and  1/2−

=B R A , then (13) becomes  

0 0min  subject to K− ≤x z Bx x‖ ‖ ‖ ‖         (13)  

Unfortunately, to solve (14) one requires the knowledge of number of targets K , which of course is unknown 
apriori. In the next section we propose a sparsity based algorithm that circumvents the need to have apriori 
knowledge of the number of targets K . 

4.0 MP-CFAR 

To implement a CFAR radar that exploits target sparsity, we propose the two-stage MP-CFAR detection 
algorithm. Candidate targets are localized in the first phase; in the second phase, the candidate targets are tested 
for detection. A detected target is then cancelled from the data. The cancellation of detected targets from the data 
is intended to remove mutual interference between targets. A block diagram of the MP-CFAR algorithm is 
shown in Figure 3. 

4.1 Stage 1: MP Localization 

The first pass of the MP localization algorithm uses whitened data  1/2−
=z R y  and whitened steering vectors 

 1/2

j j

−
=b R a , 1,..., .j G=  The first candidate target is localized by the index 1m  of the vector jb  that has the 

largest data projection,  
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2

1

| |
arg max

H
j

j H
j j

m =
b z
b b

                        (14) 

for 1,..., .j G=  The index 1m  localizes the target in the angle-Doppler domains. This information is 
subsequently used by the detection stage, as described in relation with Stage 2 below. 

 

Figure 3: Block diagram of the MP-CFAR algorithm. 
 

Next, we describe the localization of the k -th candidate target, given that 1k −  targets have already been 
localized and passed the detection test. The observed and whitened data z  is processed to cancel the 
contribution of targets detected previously. Let a matrix B  be formed with the columns .jb  Let 1kS −  be the set 

of indices of columns of B  associated with detected targets, and let  
1kS −

B  be the matrix formed by the columns 

indexed by 1.kS −  The projection matrix orthogonal to the detected targets is given by 

( )1 1 1 11

1

S k k k kk

H
S S S S− − − −−

−⊥ = −BP I B B B B . Similarly, steering vectors orthogonal to the detected targets are formed as 

follows: 
1

,
Skj j
−

⊥= Bw P b  for all 1.kj S −∉  The k -th target is localized according to  

2| |
arg max

H
j

k j H
j j

m =
w z
w w

.                       (15) 

This process continues until a candidate target fails the detection test. 

4. 2 Stage 2: Detection 
We now describe the CFAR detector that is applied to candidate targets localized in Stage 1. The first candidate 
target is detected according to the AMF test statistic [16] 




1

1 1

1 2

1

| |H
m

H
m m

T γ
−

−= ≥
a R y

a R a
 ,            (16) 

where 1m  is the index found in Stage 1. Note that the test (16) may also be expressed in terms of the whitened 

steering vectors 
1 1

1/2
,m m

−
=b R a   
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1

1 1

2| |H
m

H
m m

T γ= ≥
b z
b b

 .            (17)   

Next we describe the detection of candidate target k , given that 1k −  targets have been already localized and 
passed the detection test. The signal model is given by the expression  

1 1k k k km m S Sx
− −

= + +z b B x n  
k kS S= +B x n            (18) 

where km  is the index of the resolution cell of the k -th candidate target found in Stage 1 (15), kS  is formed by 

adding km  to the set 1,kS −  1 ,k k kS S m−=   the matrix 
1

,
k k kS m S −

 =  B b B  is the matrix formed by columns 

with indices in ,kS  
1

,
k k k

TT
S m Sx

−
 =  x x  , and  1/2

.
−

=n R e  This signal model leads to the following detection 
test: 

0 : 0
kmH x = ;  1 : 0

kmH x ≠ .           

Here, the following problem is posed: detect a target located at a specified whitened steering vector 
kmb  and 

having unknown amplitude, observed in the presence of interference and noise. The interference is of unknown 
gain 

1
,

kS −
x  but belonging to a known subspace 

1
.

kS −
B  The noise is Gaussian colored noise for which the 

covariance matrix is unknown, but secondary data is available for its estimation. 

To develop the test statistic for the detection problem, we start by expressing the likelihoods of the observations 
under the two hypotheses. As in the discussion in [16], the detector is a generalized likelihood ratio detector only 
in the sense that the likelihood under 1H  is maximized over the unknown target amplitude. To simplify the 
detector, as in [16], it is assumed that the pdf's of the test statistic under each hypothesis are based on the true 
covariance matrix. It is noted that the subsequent analysis relies on the properties of the estimated covariance 

matrix. Thus,  1/2−
=z R y  is modeled as having a covariance matrix equal to the identity matrix. It follows that 

under 0 ,H  the likelihood is  

( ) ( ) ( )1 1 1 1
0

1|
H

S S S Sk k k k

Np e
π

− − − −
− − −

=
z B x z B xz H , 

while under 1H  the likelihood is 

( ) ( ) ( )
1

1|
H

S S S Sk k k k

Np e
π

− − −
=

z B x z B xz H . 

The GLRT for deciding 1H  is given by 
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max ( | )
ln

max ( | )
S kk

S kk

S

S

p
T

p
γ

−−

 
 = ≥
 
 

x

x

z x

z x
.                       (19) 

It can be shown that the test statistic (19) can be simplified to 

1 1

2 2
2 2k k k kS S S ST

− −
= − − −z B x z B x‖ ‖ ‖ ‖ ( )

1S Sk k

H

−
= −B Bz P P z         (20) 

Therefore, in order to test the k -th candidate target, we first generate the subspace 
kSB , we then generate the 

interference subspace, 
1k kS S k
−
=B B ‚  and apply (20). The test statistic (20) is applied to every candidate target 

included in the set kS . If any of the k  tests fails to exceed the threshold γ , the algorithm terminates and outputs 
the set 1kS − , the set of 1k −  target locations. Otherwise, MP-CFAR increments the number of targets k  by one 
and reruns MP with the new value of k .  

5.0 NUMERICAL SIMULATIONS 

In this section, we present numerical results on the MP-CFAR algorithm and compare them with AMF. Unless 
stated otherwise, in figures presented in this section, the aperture of the random arrays is 12λ  ( 12,Z =  where 
Z  is expressed in units of wavelength). The number of elements in the random array is 16,aN =  thus the mean 
spacing between elements of the random array is 12 /16λ . The number of coherent pulses used by all arrays is 

25pN = . The SNR, defined as 2 2| | /x σ  is set to SNR = 15.5 dB unless stated otherwise. The clutter-to-noise 

ratio (CNR) is set to 30 dB. It was seen that the SINR of the random array defined as 1SINR H
i i i

−= a R a  is 
roughly 15 dB with these parameters. The number of training samples used to estimate the covariance matrix for 
the random array is 2L N= . The number of resolution cells on the angle-Doppler map is given by 

2(2 1) 625G Z= + = .  A random realization of a random array is generated and remains fixed throughout the 
Monte Carlo simulations for all figures unless otherwise stated. Let tS  be the true set of resolution cells that 

contain targets, and let Ŝ  be the set of resolution cells found by a detector to have targets. A false alarm event 
occurs is ˆ ,tS S ≠ ∅‚  and a detection event occurs if ˆ .tS S ≠ ∅  Unless specified, the threshold parameter 

was chosen such the probability of false alarm is 310− . The equation 

1
21 ( )

1
L N

ABF FA
L P

L N
γ − +

 +
=  − +  

 

found in [18] was used to find the appropriate value of AMFγ  for the AMF. It can be shown that corresponding 
threshold parameter for MP-CFAR is given by 
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1
21 ( )

1
MP L N

MP FA
L P

L N
γ − +

 +
=  − +  

 

where 1/1 (1 )MP G
FA FAP P= − − . The value MP

FAP  is used instead of FAP  because the MP-CFAR and algorithm 
utilize the maximization operation. 

 

 

Figure 4: Probability of false alarm vs SINR of a target for the AMF with a random array, MP-CFAR 
with a random array, and the AMF with a large ULA. 

The probabilities of false alarm of the MP-CFAR and AMF detectors are studied in Figure 4, which plots the 
empirical probability of false alarm against the SINR of a target present with the angle-Doppler pair (5/Z,0). In 
this figure, the arrays compared are a 12λ  ULA and an 12λ  random array. The random array has 16aN =  
sensors, the resolution cells for this experiment was spaced apart by 1/12λ . For each curve (excluding the line 

310FAP −= ), the results of 410  Monte-Carlo experiments were averaged to obtain the curves. The AMF tested 
every resolution cell on the angle-Doppler map. The probability of false alarm of a true CFAR detector should 
not change as a function of SINR of a target present somewhere in the search area. It is observed from the figure 
that the 12λ  ULA AMF and the random array MP-CFAR detectors have probabilities of false alarm that are 
little changed as a function of the SNR of a target. More specifically, at low SNR the MP-CFAR experiences a 
probability of false alarm of about 32 10−×  instead of 310FAP −= . This slight increase in the probability of false 
alarm occurs because at low SINR, the probability of correct recovery (the probability that MP-CFAR recovers 
the correct resolution cell to test) is less than one. As the SNR of the target increases, the probability of correct 
recovery increases, and the false alarm probability of MP-CFAR decreases to 310FAP −=  as intended. It is also 
noticed that the AMF using a 12λ  ULA experiences a slight increase in the probability of false alarm as the 
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SNR of the interfering target increases. In contrast, a random array using AMF cannot cope with energy leaked 
by high sidelobes, and as the strength of the target increases, the probability of false alarm increases.   

 

 

Figure 5: ROC curve for a single target for the AMF with a random array, MP-CFAR with a random 
array, and the AMF with a large ULA. Parameters SNR = 15.5 dB and CNR = 30 dB. 

 

In Figure 5, are shown the receiver operating characteristic (ROC) curves of the AMF using a 12λ  ULA, the 
AMF using a random array, and MP-CFAR using a random array, and for a single target in the field of view. 
The target again has the angle-Doppler pair (5/Z,0). From the figure, the large ULA using AMF performs well as 
expected. Since the ULA array does not exhibit large sidelobes, the target does not significantly increase the 
probability of false alarm. In contrast, it is seen that the AMF with the random array performs considerably 
worse. The random array has large sidelobes, and since the AMF does not account for the large sidelobes, the 
radar experiences a high false alarm rate. The MP-CFAR with a random array on the other hand performs  
similarly to the AMF with a large ULA. The MP-CFAR unlike the AMF, accounts for detected targets and 
removes the targets before detecting more targets. Note that the MP-CFAR performs similarly to the AMF with 
the large ULA using about 3/4s of the number of elements compared to the large ULA. This demonstrates the 
savings without loss of performance that are gained by random arrays and the proposed MP-CFAR detector. 

6.0 CONCLUSIONS 

In this paper we propose using a random array with the MP-CFAR algorithm to solve the target detection 
problem in a STAP setting. The random array is a large undersampled array that achieves high resolution due to 
the large aperture at the cost of high sidelobes. Although conventional beamforming cannot cope with the high 
sidelobes introduced by the random array, the proposed sparsity based algorithms can cope with the high 
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sidelobes allowing one to enjoy the high resolution of the random array without the consequences of the high 
sidelobes. This was achieved by the proposed algorithms by iteratively detecting targets one by one and 
removing their contributions from the data. Numerical simulations show that the proposed algorithms 
outperform beamforming methods when a random array is employed.   
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